Introduction

• Funding: Tennessee Healthy Watershed Initiative

• Workshop Delivery: Tennessee Water Resources Research Center

• Partners: Knox County, City of Knoxville
Special Thanks!

- Bill Hunt, NC State University

- Adrienne Cizek, Stormwater Solutions Engineering (Milwaukee, Wisconsin)

- https://stormwater.bae.ncsu.edu/

- (google: ncsu stormwater)

- ASCE Low Impact Development Conference – Houston, TX, 2015
How did we get here?
Fig. 3.21 – Relationship between impervious cover and surface runoff. Impervious cover in a watershed results in increased surface runoff. As little as 10 percent impervious cover in a watershed can result in stream degradation.

By the Federal Interagency Stream Restoration Working Group (FISRWG) (15 Federal agencies of the U.S.)
Rules and Regulations

• Federal
 • EPA Phase I of NPDES
 • EPA Phase II of NPDES
 • EISA (2007), sec 406
 • Energy Independence and Security Act (2007)
 – Section 406
 • Requires all Federal Construction Activities > 5,000 sf to use Low Impact Development
Stormwater Practices Today

• Target to mimic predevelopment conditions (Cizek and Hunt 2013)
 • Including both hydrology and flow pathways to achieve water quality
 • Examples: bioretention, permeable pavement, and regenerative stormwater conveyances (RSC).

taken from Cizek and Hunt (2013).
RSCs are...

Low Impact Development (LID) alternative to swales, pipes, media filtration and in some cases, retention/detention structures.

Also referred to as

- Biofiltration Conveyance (BFC) (*NC DOT*)
- Step Pool Stormwater Conveyance (SPSC) (*MD DPW*)
Regenerative Step Pool Storm Conveyance (SPSC) — also known as Coastal Plain Outfalls

Design Guidelines

Home Port Farms - Immediately after

Home Port Farms - One year after construction

Anne Arundel County
Maryland

County Executive John R. Leopold

Ron Brown, P.E.
History of RSCs

- Developed in Anne Arundel County, Maryland to help restore Chesapeake Bay Watershed

- Wet or dry channel options (Berg et al. 2013)
 - **Wet** - located in a perennial stream, promote floodplain connectivity, and are considered a stream restoration practice
 - **Dry** - restoration of ephemeral streams or eroding gullies and are considered a stormwater retrofit practice

- Also referred to as coastal plain outfalls, regenerative step-pool storm conveyances, and biofiltration conveyances
RSCs are... a series of pools and riffles designed to convey, manage, and treat stormwater runoff.
RSC Design Components

Sand and Wood Chip Media

Sandstone Cobble

Sandstone Boulders

Native Vegetation
Benefits over other SCMs

- Commonly used where other practices have failed
 - Steep slopes
 - Massive head cutting

- Applicable on steep slopes
 - 5% when used for WQ
 - 10% without cascade
 - 50% with cascade

- Provides predevelopment flow paths
 - Surface flow
 - Shallow interflow
 - Exfiltration
Previous RSC Research

<table>
<thead>
<tr>
<th>Wet Channel</th>
<th>Dry Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown (2010)*</td>
<td>Cizek (2014)</td>
</tr>
<tr>
<td>Cook et al. (2014)</td>
<td>Cizek et al. (2017)*</td>
</tr>
<tr>
<td>Filoso and Palmer (2011)*</td>
<td></td>
</tr>
<tr>
<td>Palmer et al. (2014)*</td>
<td></td>
</tr>
</tbody>
</table>

*peer reviewed publication
Previous RSC Research

• Originally, RSCs were developed as a tool to repair massive head cutting in existing stormwater conveyances or streams

• More recently, they have been implemented in areas with more dense soils
 • Piedmont region of North Carolina (Cizek 2014, Koryto 2016)
 • Ridge and Valley region of Tennessee (this research)

• Previous research has yielded mixed results for water quality and hydrologic performance
<table>
<thead>
<tr>
<th>Site Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributing Watershed Area (acres)</td>
<td>12.8</td>
</tr>
<tr>
<td>Impervious Area (acres)</td>
<td>1.5</td>
</tr>
<tr>
<td>DCIA (acres)</td>
<td>0.05</td>
</tr>
<tr>
<td>HSG</td>
<td>A</td>
</tr>
</tbody>
</table>
Monitoring (inlet and outlet of each cell)

Surface Flow
- Compound weirs with Hobo™ water level loggers

Sub-surface Flow
- Sampling wells, Hobo™ water level loggers

Groundwater Level
- Groundwater well
A “Cell” includes one pool and one riffle…

18” Class 1 Riprap

24” Sand/Woodchip Media

2” Hardwood Mulch

Exfiltration Trench
Storm Summary

27 inflow producing rainfall events between Oct 2012 and Mar 2014

– 2 outflow producing events

Max Rainfall Depth = 2.9 in over 48 hours

– Inflow = 777 ft3, peak flow = 195 gpm
– Outflow Volume = 42 ft3, peak flow = 17 gpm

95% Volume Reduction
90% Peak Flow Reduction
Overall Water Balance (L per 1000 L)

Cell 1: 469 → 171 → <1 → 41

Cell 2: 568 → 243 → 3 → 757

Cell 3: 117 → 17 → 5 → 839
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>1%</td>
</tr>
<tr>
<td>Seep</td>
<td>84%</td>
</tr>
<tr>
<td>Exfiltration</td>
<td>6%</td>
</tr>
<tr>
<td>Evaporation</td>
<td>10%</td>
</tr>
</tbody>
</table>
Alamance County
Site Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributing Watershed Area (acres)</td>
<td>4</td>
</tr>
<tr>
<td>Impervious Area (acres)</td>
<td>2.5</td>
</tr>
<tr>
<td>DCIA (aces)</td>
<td>2</td>
</tr>
<tr>
<td>HSG</td>
<td>D</td>
</tr>
</tbody>
</table>
Cells 1 through 3

- 18” Class 1 Riprap
- 24” Sand/Woodchip Media
- 4” to 6” Hardwood Mulch

Diagram shows the placement of materials in the cells with a transition from riffle to pool.
Cell 4

- Cascade
- 3 Pools at same elevation
- 4” to 6” Hardwood Mulch
- 18” Class 1 Riprap
- Exfiltration Trench

24” Sand/Woodchip Media
Storm Summary

Monitored 43 inflow producing events between July 2013 and June 2014

Max Rainfall Depth = 3.2 in

- Inflow Volume = 23,308 ft3, peak flow = 3900 gpm
- Outflow Volume = 8299 ft3, peak flow = 1617 gpm
Overall Water Balance

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>21%</td>
</tr>
<tr>
<td>Seep</td>
<td>77%</td>
</tr>
<tr>
<td>Exfiltration</td>
<td>2%</td>
</tr>
<tr>
<td>ET</td>
<td>0%</td>
</tr>
</tbody>
</table>
Storm Summary

Monitored 20 water quality events between July 2013 and June 2014

Inflow concentrations
- **TN**: median = 2.40 mg/L (1.59 to 9.96 mg/L)
- **TP**: median = 0.44 mg/L (0.24 to 2.14 mg/L)
- **TSS**: median = 69.1 mg/L (8.82 to 297 mg/L)

Outflow concentrations
- **TN**: median = 1.76 mg/L (1.05 to 3.85 mg/L)
- **TP**: median = 0.34 mg/L (0.18 to 1.23 mg/L)
- **TSS**: median = 11.56 mg/L (7.57 to 68.5 mg/L)
<table>
<thead>
<tr>
<th>Location</th>
<th>HSG</th>
<th>Surface Flow Volume Reductions</th>
<th>Peak Flow Reductions</th>
<th>TSS</th>
<th>TP</th>
<th>TN</th>
<th>Additional Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brunswick Co, NC</td>
<td>A</td>
<td>94-100%</td>
<td>90-96%</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>Able to mimic predevelopment hydrograph for events 1 year or less, but not all events. High water table.</td>
</tr>
<tr>
<td>Alamance Co, NC</td>
<td>D</td>
<td>84%</td>
<td>80%</td>
<td>72%</td>
<td>28%</td>
<td>30%</td>
<td>Able to mimic predevelopment hydrograph and flow pathways. Low water table for majority of system and high water table in last section.</td>
</tr>
<tr>
<td>Durham Co, NC</td>
<td>D</td>
<td>8%</td>
<td>49%</td>
<td>17%</td>
<td>17%</td>
<td>3%</td>
<td>Hydrologic reductions were only seen for rainfall less than 12.7 mm. High water table.</td>
</tr>
</tbody>
</table>
Table 2-12. Comparison of load reduction and design event depth at North Carolina Piedmont RSCs to State of Maryland regulations

<table>
<thead>
<tr>
<th>Regulation/Study</th>
<th>Design Event Depth</th>
<th>TSS Load Reduction</th>
<th>TN Load Reduction</th>
<th>TP Load Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of Maryland</td>
<td>25.4 mm</td>
<td>70%</td>
<td>57%</td>
<td>66%</td>
</tr>
<tr>
<td>Alamance RSC</td>
<td>18 mm</td>
<td>72%</td>
<td>28%</td>
<td>30%</td>
</tr>
<tr>
<td>Durham RSC</td>
<td>6 mm</td>
<td>10%</td>
<td>4.4%</td>
<td>7%</td>
</tr>
</tbody>
</table>

\(^a\) (Maryland Department of the Environment, 2014)
\(^b\) Surface flow REs applied to media flow (Cizek, 2014)
\(^c\) Event load reductions (Table 2-11)
Figure 2-12. Hydrologic mitigation based on rainfall depth: cell location box plots for f_{V24} (left) and R_{peak} (right).
Figure-2-9. Fourteen-month water balance showing flow pathways based on location.
Previous RSC Research

- HSG A (Brunswick Co.)
 - High water table
 - Able to mimic predevelopment hydrograph for events 1 year or less, but not all events
 - Good water quality reductions

- HSG D (Alamance Co.)
 - Low water table for majority of system and high water table in last section.
 - Able to mimic predevelopment hydrograph and flow pathways.
 - Good water quality reductions

- HSG D (Durham Co.)
 - High water table
 - Hydrologic reductions were only seen for rainfall less than 12.7 mm.
 - Moderate water quality reductions

- Appears that soil conditions and location of water table are driving factors in performance. It is possible to have either dense soils or high water table and still achieve performance, but not both.