
Basic Principles

Department of Civil & Environmental Engineering
Jon Hathaway, PhD, PE, Assistant Professor
John Schwartz, PhD, PE, Professor
Jessica Thompson, PhD Candidate

Tennessee Water Resources Research Center
Tim Gangaware, Assistant Director
Landscape / Drainage Position

- **RSC placement**
 - Stormwater outfall discharges with distance from receiving stream, into ephemeral channels, and overland flow.
 - Any concentrated flow from human-caused impervious structures, i.e., parking lots, buildings, etc.

Photo Credits: Montgomery County, Maryland
Altered Geomorphic Processes

- **Force vs Resistance**
 - Force – reach-scale excessive stream power \([\Omega = \gamma Q S / w] \); and local-scale hydraulic forces \([F = \rho q \Delta v]\)
 - Resistance – reach-scale composition of boundary material and roughness \([\text{avg. } \tau_c, n]\); and local-scale critical shear stress \([\tau_c]\).

[Credit: Fairfax County, Virginia]

Local hydraulic force \([F]\) in plunge pool *versus* reach-scale fluvial erosion \([\Omega]\) and possible bank geotechnical failures due to gravity forces

[Credit: Montgomery County, Maryland]
Altered Geomorphic Processes

• Influential Factors in Bank Erosion: Review of Dominant Processes

Subaerial Processes:
- microclimate (i.e., temperature, vegetation, valley aspect); *and*
- bank soil composition (especially silt/clay percentage)

Hydraulic Fluvial Processes:
- stream power; local shear stress distribution; secondary currents;
- local slope; bend morphology (curvature); bank composition;
- vegetation; *and* bank moisture content

Geotechnical (Mass) Failure:
- bank height; bank angle; bank composition; soil bulk
- weight, *and* bank moisture content (pore water pressure tension).

Credit: STREAM ATTRIBUTE ASSESSMENT METHODOLOGY (SAAM)
U.S. Army Corps of Engineers, Norfolk District
Altered Geomorphic Processes

• Hydraulic Erosion Processes

Terms used:

Hydraulic shear stress – the force exerted by water flowing over boundary material, Pascals (1 Pa = 1 N/m²)

Boundary shear stress - τ_o, the shear stress developed by moving fluid at the boundary (no slip condition).

Critical shear stress - τ_c, property of the boundary material where erosion of the boundary material starts

Excess shear stress - $\tau_e = \tau_o - \tau_c$

Erodibility – volume of erosion per unit excess shear stress, per unit time (cm³/Pa/sec). Per unit area it is termed as a coefficient - k_d

Erosion rate – rate of bank retreat (m/sec) and computed by the excessive shear stress equation: $E = k_d(\tau_o - \tau_c)^n$
Altered Geomorphic Processes

• Hydraulic Erosion Processes

The difference between total boundary shear stress, \(\tau_o \), and critical shear stress, \(\tau_c \), is the excess shear stress, \(\tau_e \). \[\tau_e = \tau_o - \tau_c \]

This is the shear stress that is available to cause erosion. The amount of erosion (E) that occurs is a function of the erodibility, \(k_d \), and the excess shear stress, \(\tau_e \).

\[E = k_d(\tau_e)^n \]

\(n \) is assumed to be equal to 1

Credit: Andrew Simon, Cardno, Inc.
Altered Geomorphic Processes

- Geotechnical Processes
 Forces affecting soil shear stress:

 - Cohesion: electro-chemical bonds between particles
 - Normal load - weight of bank increases friction
 - Friction - inter-particle roughness
 - Matric suction - apparent cohesion
 - Pore-water pressure - reduces effective friction

Credit: Andrew Simon, Cardno, Inc.
Altered Geomorphic Processes

• Geotechnical Processes: Prediction of Bank Failure

Framework for River Bank Stability Analysis:

\[\text{FS} = \frac{FR}{FM} \]

Bank failure: \(\text{FS} < 1 \)

(Amri-Tokaldany et al. 2003)

\[
FR = CL + F_{npwp} + (W_{\text{force}} \cos \beta + F_{cp} \cos i - F_{\text{uplift}} - H_{\text{force}} \sin \beta) \times \tan \phi \\
FM = W_{\text{force}} \sin \beta - F_{cp} \sin i + H_{\text{force}} \cos \beta
\]

\(W_{\text{force}} \) = weight of the unit width of failure block; \(F_{cp} \) = hydrostatic confining pressure

\(H_{\text{force}} \) = hydrostatic force exerted by any water present in the tension crack on the block

\(F_{npwp} \) = force due to negative pore water pressure; \(F_{\text{uplift}} \) = positive pore water pressure

\(\tan \phi \) = the friction angle averaged across each layer; \(C \) = cohesion; \(L \) = length of failure plane
Altered Geomorphic Processes

• Geotechnical Processes

Force vs resistance:

\[
Factor of Safety (F_s) = \frac{\text{Resisting Forces}}{\text{Driving Forces}}
\]

If \(F_s \) is less than 1.0 the bank will theoretically fail.
If \(F_s \) is greater than 1.0, bank is considered conditional stable (\(F_s > 1.3 \) stable).

<table>
<thead>
<tr>
<th>Resisting Forces</th>
<th>Driving Forces (gravity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil shear strength</td>
<td>Bank angle</td>
</tr>
<tr>
<td>Matric suction</td>
<td>Weight of soil mass</td>
</tr>
<tr>
<td>Root reinforcement</td>
<td>Weight of water in bank</td>
</tr>
<tr>
<td>Confining force</td>
<td>Bank height</td>
</tr>
<tr>
<td>Pore-water pressure</td>
<td>Surcharge</td>
</tr>
</tbody>
</table>

Credit:
Andrew Simon, Cardno, Inc.
Altered Geomorphic Processes

• Geotechnical Processes
 • **Channel incision** is a process involving both hydraulic erosion and geotechnical failure processes in streams.
 • Excessive stream and local fluid power concentrated overland.

Credits: Gannett Fleming, Maryland

Credit: Cabin Branch, State of Maryland

Dry Channel // Ephemeral

Wet Channel // Stream
Altered Geomorphic Processes

• Streams: Channel Evolution Model

Simon and Darby (1999)
Altered Geomorphic Processes

- **Channel Evolution Model**
 - **Knickpoints**: upward moving point of erosion with steep (nearly vertical) bed slope
 - **Headcuts**: same as a knickpoint but can migrate upstream or downstream
 - **Grade Controls**: a hard point in the channel that prevent further upstream/downstream migration of a knickpoint

Simon and Darby (1999)
Altered Geomorphic Processes

• Ephemeral Channels: Headcuts, Knickpoints, Grade Controls:
 • D/S migration from plunge pool due to excessive stream power and little bedload supply
 • U/S migration from channel incision in the receiving stream.
 • D/S and U/S can occur.
 • Grade controls, natural or artificial can stop channel degradation processes.
Environmental Impacts

- Excessive Channel Erosion
 - Increased fine sediment yields to the receiving stream
 - Receiving streams may be impaired for siltation and habitat alteration – 303(d) list
 - Embeddedness in receiving stream’s riffle habitat, impacting benthic macroinvertebrates and fish
 - Increased stream turbidity
 - Increased nutrient $[PO_4^{3-}]$ transport and excessive biofilm growth
Environmental Enhancements

- **RSC Water Quality and Ecological Benefits**
 - Reduced fine sediment into the receiving stream
 - Improved water quality (↓ nutrients & temperature) through bio-media filtration
 - Create habitat space for wetland flora
 - Provide aquatic habitat for benthic macroinvertebrates, and through BMI drift generate food for fish in receiving stream
 - Increase fine organic matter (FOM) carbon loads to the receiving stream for enhanced ecosystem processes

Credit: Nat’l Park Service

Credit: Univ. of Maryland, Center for Environ. Science
Geomorphic Relations with Stream Processes

- RSC emulating stream processes
 - Riffle-pool sequences ::: step-pool sequences
 - Hyporheic zone for water quality ::: enhanced with bio-media as used in bioretention facilities
 - Groundwater influence and stream recharge.

Credit: wisc.edu
Geomorphic Relations with Stream Processes

- **Stream Geomorphology: Pool-riffle sequences**

 Generally associated with meanders, but bar unit can occur in straight channels.

 Photo Credits: geosciences.wisc.edu
Geomorphic Relations with Stream Processes

• Riffle-pool spacing ::: step-pool features

Riffle-Pool Spacing: Average 5-7 channel unit widths from a range of 1.5 to 23.3 channel unit widths formed by sediment aggradation and degradation.

Step-Pool Spacing: Variable based on geomorphic controls formed by hydraulic forces and scour-resistance large immobile bed materials (e.g., boulders).

In general, riffle-pool sequences occur with bed slopes < 2%, and step-pool sequences occur with bed slopes > 5%.
Geomorphologic Relations with Stream Processes

- Riffle-pool spacing ::: step-pool features
 - Hydraulic maintenance processes defer than those in 2nd+ order streams
 - Physical structure represents those in 1st to 2nd order streams/tributaries

<table>
<thead>
<tr>
<th>2nd - 3rd + order streams</th>
<th>1st - 2nd order streams / RSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach-scale helical flow development, hydraulics governed by bed and bank resistance (vegetation).</td>
<td>No helical flow development; local hydraulics governed by instream structural controls.</td>
</tr>
<tr>
<td>Riffle-bar development depends on bedload sediment supply – a bar unit feature.</td>
<td>Bedload sediment transport controlled by channel capacity hydraulics (scour).</td>
</tr>
<tr>
<td>Shear-reversal from low flow to high flow. During low flows, shear stress ↓ in pools, ↑ in riffles; during high flows, shear stress ↑ in pools, ↓ in riffles.</td>
<td>Flow acceleration and deceleration; vertical flow more dominant.</td>
</tr>
</tbody>
</table>
Geomorphic Relations with Stream Processes

- Hyporheic flow

Interactions at the surface-water/groundwater interface can play an important role in the concentration and load of constituents and can have significant environmental influences on biogeochemical processes (Bencala, 2005)

The hyporheic zone is a region beneath and lateral to a stream bed where there is mixing of shallow groundwater and surface water

Winter et al. (1998); Bencala (2005)
Geomorphic Relations with Stream Processes

• 4D stream view: longitudinal, lateral, vertical, and hyporheic

Water Quality Literature:
> Aerobic-anoxic denitrification
> Dissolved organic carbon (DOC) dynamics
> Metals adsorption

Credit: wisc.edu
Geomorphic Restoration Goals

- RSC Designs
 - Geomorphic threshold design – stabilize channel boundary with fixed geometry and sediment transport to pass through with minimal aggradation.
 - Hydraulic retention in pools and water filtration through riffles to improve water quality
 - Promote wetlands vegetation